Measuring TOA Radiative Flux from Space: The Angular Problem ### With a Balloon at 35 km... - you can just measure the outgoing flux directly! - but until recently, commercial flux radiometers were biased and inaccurate... - and we didn't have the funding to develop a custom set of radiometers for 35 km altitude work... - but now, piggybacking on much recent work in ARM, at Langley and Goddard, at NOAA, and elsewhere, commercial flux radiometers are much better understood 2002 ### **Large-Balloon History** - Late 1700s, France: Montgolfier brothers - measured temperature profiles - 1960: First NASA balloon experiment - communications satellite, Echo I - 1985: Balloons in the clouds of Venus - 1987: Balloon-borne sensors observed Supernova - almost no Earth Science use (mainly stratos. chemistry) - flights too short - unsteerable , 2002 #### LDB/ULDB Balloon Payload: up to 4000 kg Volume: up to 1 million m³ #### Long Duration Balloon: zero-pressure - flight duration: 3-5 up to 30 days max - altitude: 35-40 Km - yo-yo's up and down due to solar heating, cooling - at mercy of winds #### Ultra Long Duration Balloon: super-pressure - flight duration: 100-365 days - altitude: 30-35 Km (no yo-yoing) - steerable (in future) , 2002 ## Diurnal Altitude Change of LDB/ULDB Even at night, the Earth's atmosphere glows from reflected starlight, moonlight, man-made ultraviolet (UV) light and molecular processes. NIGHTGLOW! ### Nightglow Gondola ### Nightglow Payload | ument | Contact
Person | | Configuration | | Location | | Physical
Dimension
(in) | Mass
(lbs) | Power/TM
Requirement | R | hermal
equirement
emp range) | Power
(Heat,
E-deck | |-----------------|---|------------|--|-------------------|--|-------------------|---|---------------|----------------------------|----|------------------------------------|---------------------------| | ghtglow
ime | Louis
Barbier (PI)
NASA
GSFC | | Overall Structure
and Electronics
Deck | 1 | Gondola
Structure | 1 | 80 x 68 x 24
(E-deck) | 1600 | Power=28 W
Channels= | -4 | 0 C to +50 C | 20 | | DAR | Louis
Barbier | d | (1) Mirror/PMT,
(2)
Laser/electronics | | (1) Outer
frame
(2) Under | (1)
(2) | 24 x 24 x 60
9 x 8 diam. | 180 | Power= 8 W | -4 | 0 C to +50 C | 0 | | te Lit e | Jeff
Houser
NASA | (1)
(2) | Electronics
Sensor | (1)
(2) | frame
E-deck
Solar array
frame | (1)
(2) | 14 x 14 x 12
5 x 4 x 4 | 25 | Power= 3.05
Channels= 3 | -4 | 0 C to +50 C | 3.05 | | Cloud
mera | GSFC
Steve
Stochaj
New
Mexico | | Camera/Electronic
s | | Under frame
(in LIDAR
laser vessel) | | 4 x 3 x 5
(in LIDAR
laser vessel) | 10 | Power= 3 W
Channels= ?? | _4 | 0 C to +50 C | 0 | | dium EP | Magal särd
NASA
Wallops | (1)
(2) | Electronics
2 Antennae | (1)
(2) | E-deck
Antenna farm | | (1) 20 x 14 x
14 | 60 | Power= 15 W
Channels= 0 | -4 | 0 C to +50 C | 15 | | PS REx | FF
Steve
Katzburg
NASA | (1)
(2) | En tronics
2 Ap ennae
(p/down)
Solar panel?? | (1)
(2)
(3) | E-deck
Under frame
& farm
LIDAR frame | (1)
(2)
(3) | 15 x 11 x 7
7 x 7 x 1
25 x 20 x 1 | 30 | Power= 15 W
Channels= 0 | -4 | 0 C to +50 C | 15 | | ERES | Wenying
Su
NASA | (1)
(2) | Rece vers | (1)
(2) | E-deck
Under frame | | (1) 5 x 5 x 5 | 40 | Power= 2 W
Channels= ?? | -4 | 0 C to +50 C | ? | | TALS | Langlev | | 4333 | | | | 等 評主 | 1945 | | | | 50+ | , 2002 ## CERES Validation Package on Nightgrow - Pyranometers: - Eppley PSP (modified with dome thermocouples) - Kipp & Zonen CM22 - Pyrgeometers: - Eppley PI R - Kipp & Zonen CG4 - Data relay system - Nightglow's system - Our own system using I ridium - Data storage - On board - Daily downlink , 2002 ### Radiometers for Nightglow # Launch and Package Recovery ### Balloon and Satellite Footprint ### CERES Overpass Estimation - Each day <u>four</u> CERES and balloon overlapping opportunities (Terra + Aqua) - If use CERES programmable azimuth plane scan mode, overlapping can be increased tenfold - If calibrate balloon radiometers to CERES overpasses, can test 3-hourly guesstimates based on GOES 2002